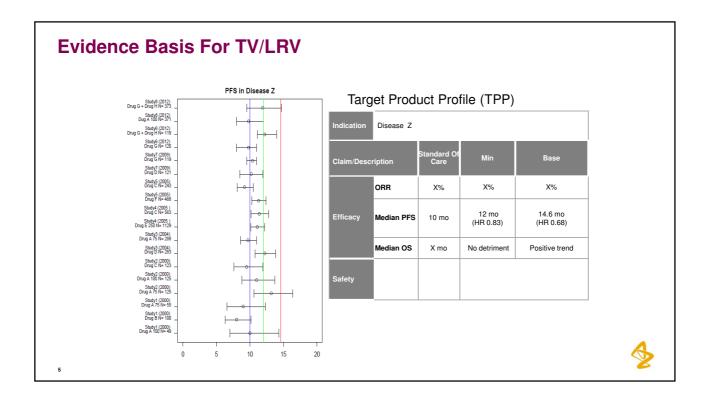
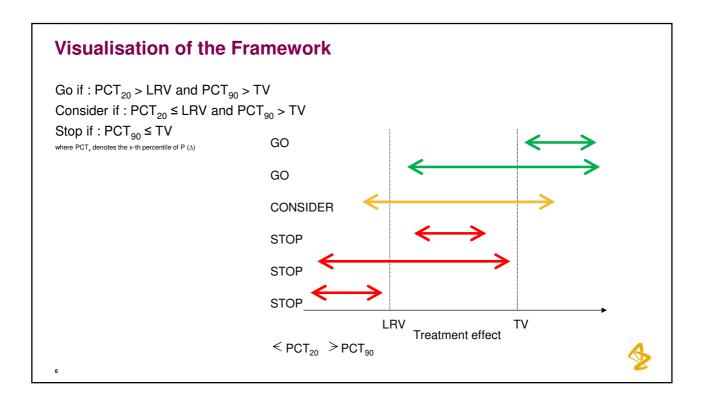
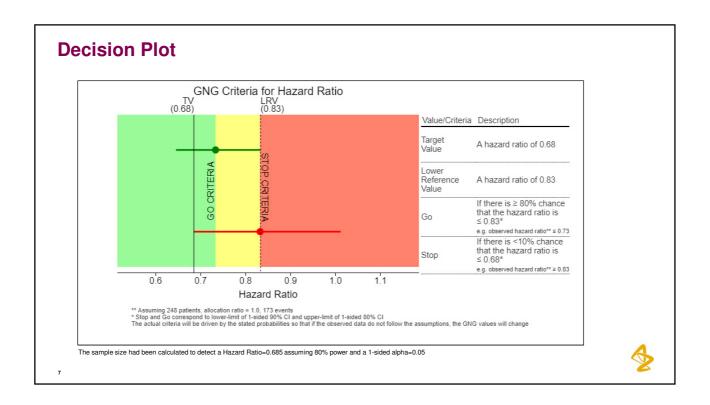
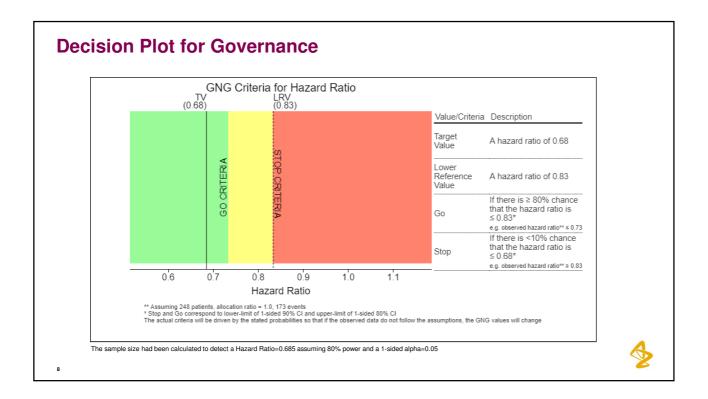

Decision Making in Early Clinical Development: The framework used within AstraZeneca

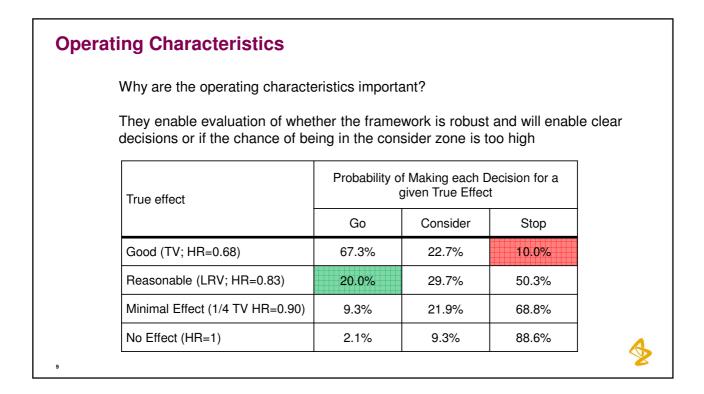
Paul Frewer, Associate Director, Statistics Early Clinical Biometrics, Early Clinical Development, IMED Biotech Unit, AstraZeneca, European Statistical Meeting on Decision Making in Drug Development, Paris, Dec 12th 2018

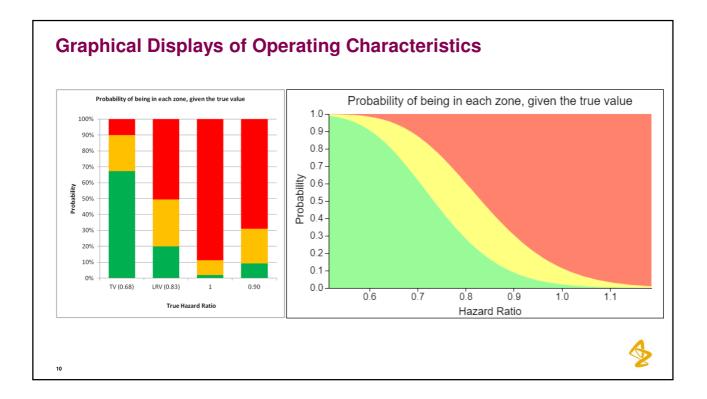


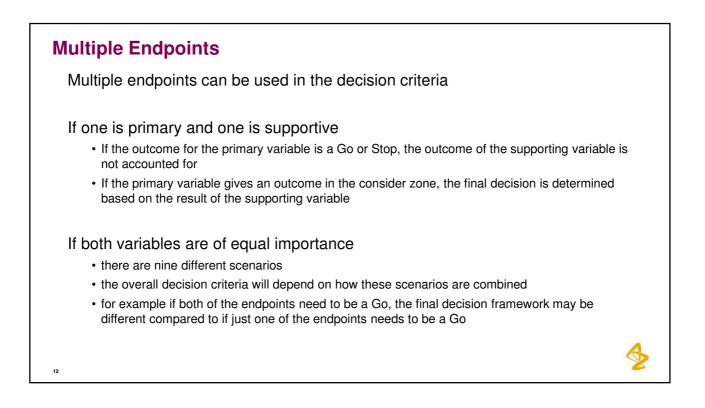

What we will cover today

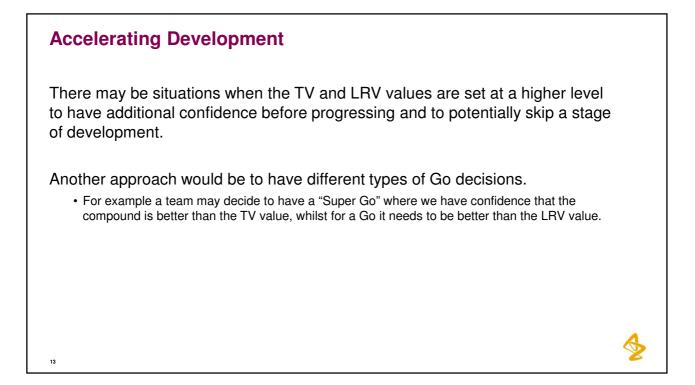

- Background
- Decision Framework
- Special Considerations
 - Actions in Consider Zone, Multiple Endpoints, Accelerating Development
- What are Acceptable Operating Characteristics
- Sizing a Study based on the Decision Framework
- Interim Analyses (Futility and Administrative)
- Implementation, Software Development and Experience to date

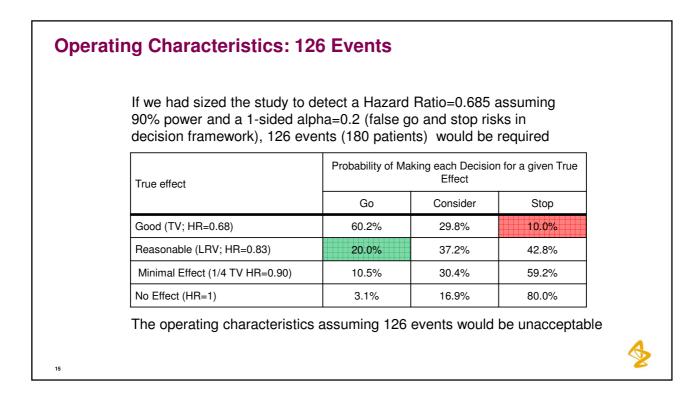



Decisio	n Framework				
	Three outcome decision	1			
	Go Con	sider	Stop		
	Decision parameters			_	
	Target Value (TV)	Des	ired level of performa	ance	
	Lower Reference Value (LRV)	Mini	mal level of performa	ance	
	False Stop Risk		c of a "Stop" decision er than the TV (typica		
	False Go Risk	-	c of "Go" decision if th se than the LRV (typi		
4	The LRV and TV needed to b	oe eviden	ce based and scien	tifically justified	♦

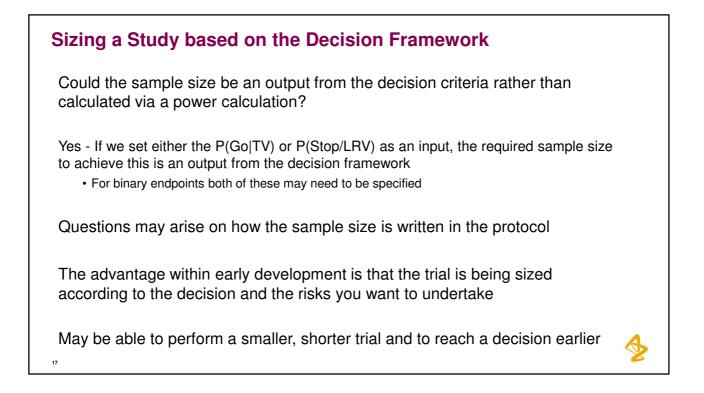






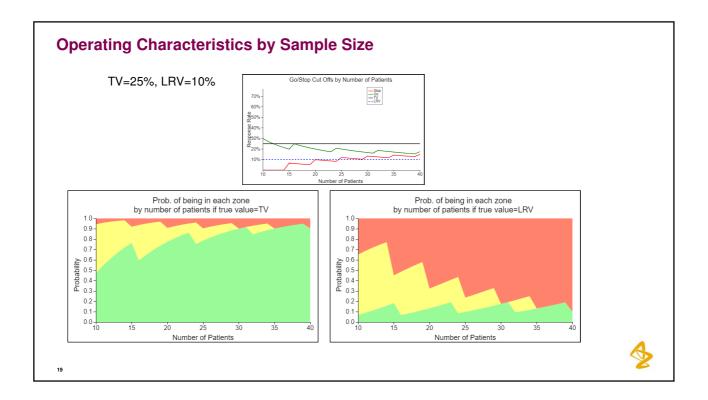


Actions in the Decision Zones
Clear if outcome in Go or Stop zones
If outcome in the Consider zone, additional information can be used: • Develop decision criteria based on a secondary endpoint • Use of competitor data of a similar compound
 Could also aid decisions to be made across the portfolio If resources are scarce, may not want to move forward with compounds in the consider zone and instead focus on those with a clear positive decision A differing view may be taken if few compounds were progressing to the next stage of development
11



The size of the 'Consider' z	zone can be calculated un	der the LRV and TV	
Allowable Risk of Consider	Size of Consider Zone		
Low	< 10%		
Medium	≥10% to <20%		
High	≥20% to <30%		
Unacceptable	≥30%		
This can be adjusted I	by changing the sample si	Ze	

Stability of Operating Characteristics in Single Arm Studies with a Binary Endpoint


Due to the nature of the binomial distribution, if an additional patient was added the operating characteristics of the decision criteria can get worse (see example on following slide)

When selecting a sample size, should we be looking at

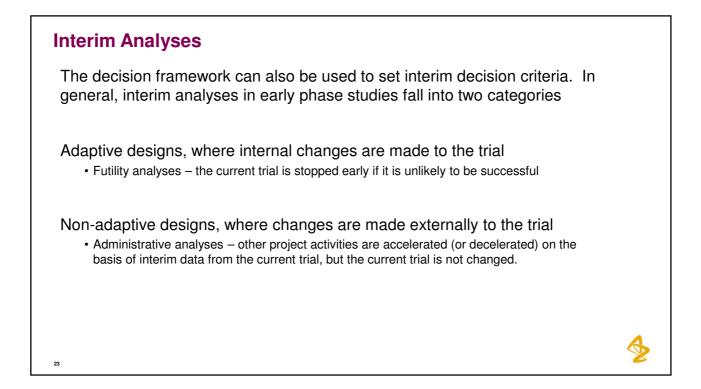
1) the first occurrence of acceptable criteria

18

2) the minimum number required to always have acceptable criteria

TV=25%, l							
		<u>ruth =TV (25%</u>			ruth =LRV (10%		
Sample Size	Go	Consider	Stop	Go	Consider	Stop	
12	61%	36%	3%	11%	61%	28%	
13	67%	31%	2%	13%	61%	25%	
14	72%	26%	2%	16%	61%	23%	
15	76%	16%	8%	18%	27%	55%	>
16	59.5%	34%	6%	7%	42%	51%	
17	65%	30%	5%	8%	44%	48%	
18	69%	27%	4%	10%	45%	45%	
19	74%	23%	3%	11%	46%	42%	
20	77%	13%	9%	13%	19%	68%	>
21	81%	12%	7%	15%	20%	65%	
22	84%	10%	6%	17%	21%	62%	
23	86%	9%	5%	19%	22%	59%	
24	75%	21%	4%	9%	35%	56%	
25	79%	12%	10%	10%	14%	76%	

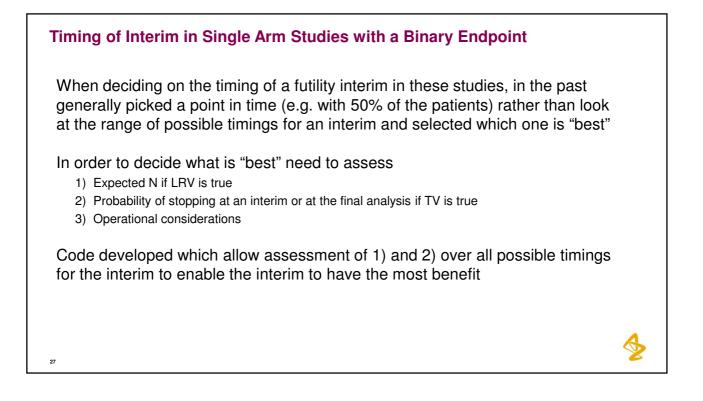
Sample Size Look Up Tables

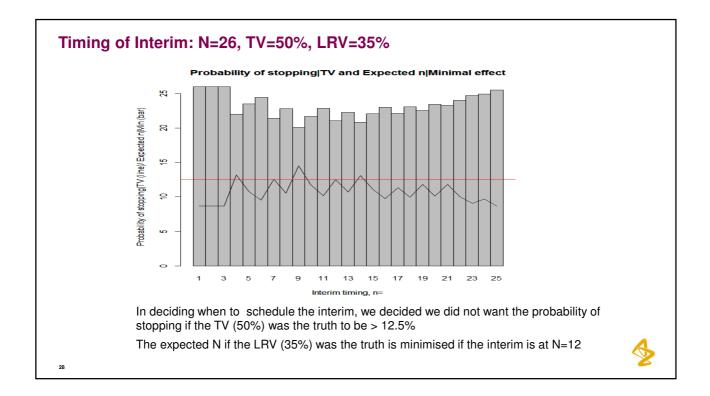

Sample size look up tables are provided (based on the minimum sample size to always have "acceptable" operating characteristics)

They all assume the standard probabilities for a False Go and a False Stop of 20% and 10% respectively

Sizes are given for a range of what are acceptable operating characteristics

- 1) The probabilities of a Go | TV is ≥60% and a Stop | LRV is ≥50% (i.e. Consider probabilities are ~≤30%)
- 2) The probabilities of a Go | TV is ≥70% and a Stop | LRV is ≥60% (i.e. Consider probabilities are ~≤20%)
- 3) The probabilities of a Go | TV is ≥80% and a Stop | LRV is ≥70% (i.e. Consider probabilities are ~≤10%)
- 4) The probabilities of a Go | TV is ≥90% and a Stop | LRV is ≥80% (i.e. No Consider zone)


				red to ensure ting character		
				ne Consider Z		
LRV	TV	~ 30%	~ 20%	~ 10%	None	
5%	20%	18	18	25	32	
10%	25%	20	25	30	35	
15%	30%	21	29	33	45	
20%	35%	25	32	38	48	
25%	40%	24	33	42	53	
30%	45%	27	34	42	57	
35%	50%	26	35	44	57	
40%	55%	25	38	48	55	
45%	60%	29	34	45	58	
50%	65%	24	33	43	58	
55%	70%	24	32	41	58	
60%	75%	22	31	41	52	
65%	80%	22	30	38	47	
70%	85%	19	24	34	44	
75%	90%	16	21	27	35	
80%	95%	14	15	21	27	



previous PFS exam	for futility was also investigate ple. The same framework for t m data and the interim decision 90	the TV, LRV a	nd the risks was	
Probability of stopping		IA stop	oping rule	
	True drug effect	No Interim	Interim (87 Events)	
At any time (IA or Final analysis)	Good (TV; HR=0.68)	10.0%	15.2%	
	Reasonable (LRV; HR=0.83)	50.3%	56.5%	
	Minimal Effect (1/4 TV HR=0.90)	68.8%	73.3%	
	No Effect (HR=1)	88.6%	90.6%	
Early (At IA)	Good (TV; HR=0.68)		10.0%	
	Reasonable (LRV; HR=0.83)		35.7%	
	Minimal Effect (1/4 TV HR=0.90)		49.0%	
	No Effect (HR=1)		68.6%	

<u> </u>		•	t, N=32, TV=3			
	No IA		Consistent		Inconsistent	
True drug effect	Red at final	Green at final	Red at both interim and final	Green at both interim and final	Green at interim, Red at final	Red at interim, Green at final
Good (TV 35%)	8.2%	84.2%	2.3%	50.1%	0.2%	1.5%
Reasonable (LRV 20%)	69.8%	17.5%	33.3%	5.9%	0.7%	0.9%
Minimal (1/4 TV 8.75%)	99.5%	0.1%	84.9%	0%	0%	0%

Single Arr	n Study		hooint N-	-20 T\/_2	5º/ I D\/	/_200/ lr	nterim at N=16
Single An	n Study ,	Unn end		:52, 1 V=5	J /0, LNV	=20 /0, 11	iterini at N=10
				Final			
True drug effect			Red	Amber	Green	Total	Green shading: correct decision made
Good		Red	2.3	0.7	1.5	4.5	to invest/not invest \$
(TV 35%)	Interim	Amber	5.7	6.2	32.6	44.4	and FTE
		Green	0.2	0.8	50.1	51.1	
	total		8.2	7.7	84.2	100.0	Orange shading:
							potential risk that
Reasonable		Red	33.3	1.5	0.9	35.7	incorrect decision
(LRV 20%)	Interim	Amber	35.8	9.9	10.6	56.4	was made to invest/not invest \$
		Green	0.7	1.3	5.9	7.9	and FTE
	total		69.8	12.7	17.5	100.0	and TE
							Red shading:
Minimal		Red	84.9	0.1	0.0	85.0	incorrect decision
(8.75%)	Interim	Amber	14.5	0.3	0.1	14.9	made to invest/not
		Green	0.0	0.0	0.0	0.1	invest \$ and FTE
	total		99.5	0.4	0.1	100.0	IIIVESI (allu I TL

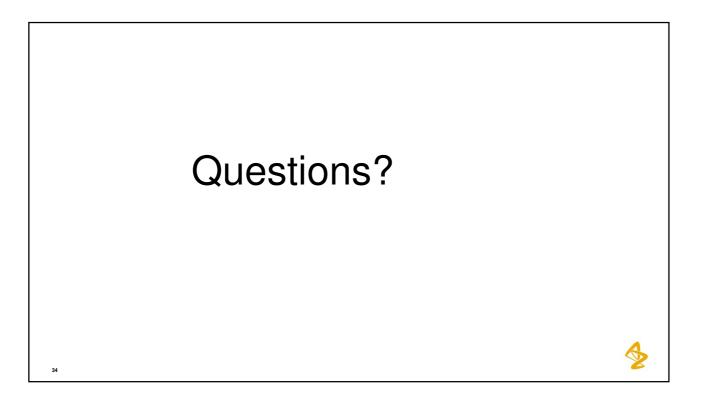
Implementation

29

- Implemented in 2013
- Initially Excel, SAS and R functions developed for setting frequentist decision cut-off values and simulating operating characteristics
- Standardized presentations to governance
- Software solution developed with Cytel has been in place for 2 years
- · Bayesian designs included in the software
- Published in Pharmaceutical Statistics and presented externally

Software Solution put Table Output Table: Go/Stop Calcula Events Control SS Treatment SS Endpoint LRV 0.83 nout Meth Control Median Tim UCL ent Mer tian Time Th Cut Off Freatment Median Time LR DC_LRN Cut Off LCL UCL AR TV Go Cut Off Prob of GAR Green 67.3% 20.0% 2.1% Amber 22.7% 29.7% 9.3% Red 10.0% 50.3% 88.6% 90.0% 49.7% 11.4% TV (0.68) LRV (0.83) DC_LRV GNG Criteria for Hazard Ratio T GNG Criteria A hazard ratio of 0.68 248 248 A hazard ratio of 0.83 e is ≥ 80% chan 80 12 7 0.8 0.9 Hazard Ratio 0.6 40 0.8 0.9 Hazard Ratio Go (0.73) 67.3% 20.0% 2.1% p (0.83) 10.0% 50.3% 88.6% BSP. 40 Target Value (0.68) 22.7% 29.7% 9.3% 1.0, 173 events sided 90% CI i 50 ie (0.83) BSP 30

Experience


- This methodology is used throughout Early Clinical Development at AstraZeneca, teams are required to create prospective decision criteria using this approach
- Governance reviews and approves the decision criteria prospectively at the time of an investment decision
- Decision criteria are now produced routinely within the teams as part of the design of all studies
- · Decisions made are based on trial data and the previously agreed decision criteria
- The role of the statistician in developing the decision criteria is key
 - evidence-base the TV and LRV
 - generate the operating characteristics of the decision
 - consult on how to improve operating characteristics and the use interim analyses to investigate decision timings.

References

33

Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, Tensfeldt TG, Parivar K, Amantea M, Glue P, Koide H, Miller R. *Model-based Drug Development*. Clinical Pharmacology & Therapeutics 2007; **82**:21–32

Frewer, P., Mitchell, P., Watkins, C., and Matcham, J. (2016) Decision-making in early clinical drug development. *Pharmaceut. Statist.*, 15: 255–263

